Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Materials Science fo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Materials Science for Energy Technologies
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Changes in inorganic and organic matters in processed water from hydrothermal-treated biogas slurry

Authors: Xiaofei Ge; Tao Zhang;

Changes in inorganic and organic matters in processed water from hydrothermal-treated biogas slurry

Abstract

Carbon neutrality innovation technologies are a leading research topic in sustainable development. Among these, anaerobic digestion is considered as a better choice for biowaste utilization. However, large amounts of produced biogas slurry hamper the widespread application of anaerobic digestion. The hydrothermal process is regarded as favorable to treat biogas slurry. The effects of inorganic and organic matter in processed water from the hydrothermal-treated biogas slurry were investigated in our research. The changes in inorganic elements such as P, Ca, Mg, Cu, and Zn were detected at different reaction temperatures (90, 120, 150, 180, 210, and 240 ℃) and acid catalytic conditions (0.5, 1, 2, 3, 4, 4.5, and 5 mL 5 M HCl). The changes in organic matter were analyzed using three-dimensional excitation emission matrix fluorescence spectroscopy. With the increase in the hydrothermal reaction temperatures, the quantity of total and inorganic P and the concentration of Ca initially increased and then decreased, concentration of Mg remained constant, while the concentration of Zn and Cu showed a trend of initial decrease and then increase, and the macromolecular organic matter was hydrolyzed into small, soluble molecular organic matter. With the increase in HCl, the amount of released total and inorganic P and concentrations of Ca, Mg, Zn, and Cu increased, and the macromolecular organic matter was hydrolyzed into small molecular organic matter. The hydroponic testing indicated that the processed water has a positive effect on the growth of maize. These results provide critical findings on the reuse of biogas slurry, which is useful for biowaste management and improves carbon neutrality strategy.

Related Organizations
Keywords

Inorganic matter, Energy conservation, TJ163.26-163.5, Biowaste utilization, TA401-492, Biogas slurry, Organic matter, Materials of engineering and construction. Mechanics of materials, Hydrothermal process

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold