Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Publikationer från K...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nano Energy
Article . 2013
Data sources: VIRTA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nano Energy
Article . 2013
Data sources: VIRTA
Nano Energy
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A new energy conversion technology based on nano-redox and nano-device processes

Authors: Peter Lund; Manish Singh; Liangdong Fan; Bin Zhu; Bin Zhu; Janne Patakangas; Rizwan Raza; +3 Authors

A new energy conversion technology based on nano-redox and nano-device processes

Abstract

Abstract Electrolyte-separator-free fuel cell (EFFC) is a new emerging energy conversion technology. The EFFC consists of a single-component of nanocomposite material which works as a one-layer fuel cell device contrary to the traditional three-layer anode–electrolyte–cathode structure, in which an electrolyte layer plays a critical role. The nanocomposite of a single homogenous layer consists of a mixture of semiconducting and ionic materials that provides the necessary electrochemical reaction sites and charge transport paths for a fuel cell. These can be accomplished through tailoring ionic and electronic (n, p) conductivities and catalyst activities, which enable redox reactions to occur on nano-particles and finally accomplish a fuel cell function.

Country
Sweden
Keywords

Nanocomposite, Fuel cell, OXIDE, CIRCUIT, Energy Engineering, Bulk hetero-junction, Energiteknik, FREE FUEL-CELLS, Nanoredox, Semi-ion-conductor, LAYER, HETEROJUNCTION SOLAR-CELLS, CONDUCTIVITY, ELECTROLYTE

Powered by OpenAIRE graph
Found an issue? Give us feedback