Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nano Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nano Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reversing heat conduction loss: Extracting energy from bulk water to enhance solar steam generation

Authors: Yida Wang; Xuan Wu; Xiaofei Yang; Gary Owens; Haolan Xu;

Reversing heat conduction loss: Extracting energy from bulk water to enhance solar steam generation

Abstract

Abstract Interfacial solar steam generation offers a sustainable and affordable technology for seawater desalination and water treatment. During solar steam generation the temperature of the solar evaporation surface is generally higher than the bulk water, which results in energy loss to the bulk water by heat conduction. While many strategies have been developed to minimize and/or eliminate the conductive heat loss, this study focuses on completely reversing conductive heat loss and turning it into an energy extraction from the bulk water to enhance the evaporation during solar steam generation. This was achieved by introducing a certain area of cold evaporation surface between the solar evaporation surface and the bulk water, which led to the conductive heat loss from the solar evaporation surface being completely absorbed and consumed by the cold evaporation surface before reaching the bulk water. Meanwhile, due to its lower surface temperature, the cold evaporation was also able to extract energy from the bulk water, turning the heat conduction loss from the evaporator to the bulk water into the energy harvest from the bulk water. When the surface area of the cold evaporation surface was increased to a certain point (50.3 cm2 in this work), heat flow was reversed, and energy was extracted from the bulk water by the evaporator to enhance solar evaporation. Theoretical simulations agreed well with the experimental results. In addition, as parasitic effects, the cold evaporation surface was also able to gain energy from the ambient air and lower the temperature of the solar evaporation surface, reducing both radiation and convection energy loss. As a result, the evaporation rate and the light-to-vapor energy efficiency of the evaporator were far beyond the theoretical limits, confirming that this strategy has great potential for further practical applications.

Country
Australia
Related Organizations
Keywords

photothermal, reduced graphene oxide, solar steam generation, energy efficiency, conductive heat

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    264
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
264
Top 0.1%
Top 10%
Top 0.1%