
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Containment of a genetically modified microorganism by an activated sludge system

The effectiveness of physical, chemical and biological barriers to the diffusion of genetically modified microorganisms (GMMs) to prevent their release into the environment is currently under scrutiny worldwide because of the associated potential ecological impacts. An industrial discharge of a non-sterilized fermentation broth containing GMM biomass into a conventional municipal wastewater treatment plant would deliver the GMMs into the activated sludge system process (ASSP). The present work aimed to model and evaluate the containment capability of a small ASSP (part of a 20,000 people equivalent municipal plant) in the event of receiving GMM biomass from a medium-small biotechnological plant dedicated to the production of polyhydroxyalkanoates (3000 t/year of biopolymer). An actual GMM (Pseudomonas putida KTOY06) was injected into a bench-scale ASSP (ASSPLab) in a quantity proportional to the relative dimensions of the plants mentioned. The experimental and model results indicated that the ASSP of the target municipal treatment plant would not be capable of holding back such a sudden input of GMM; 6 h after the discharge, 11-15 % of injected GMM cells were released through the clarified stream of the ASSPLab, with the rest being gradually released over time. Since the GMM employed did not exhibit any growth in the ASSPLab, its concentration in the clarified water stream would not represent a substantial risk of release into the environment if appropriate tertiary treatments were integrated. This study confirmed the necessity of a thorough risk assessment of biotechnological processes prior to their implementation.
330, Bioengineering, Risk Assessment, Modelling, Municipal wastewater treatment plant, Fermentation safety, Industrial effluent, Biomass, Molecular Biology, Sewage, Tertiary treatment, Fermentation safety; GMM fate; Industrial effluent; Modelling; Municipal wastewater treatment plant; Tertiary treatment, General Medicine, Energy Research, Aerobiosis, 620, Disinfection, GMM fate, Microorganisms, Genetically-Modified, Biotechnology, Environmental Monitoring
330, Bioengineering, Risk Assessment, Modelling, Municipal wastewater treatment plant, Fermentation safety, Industrial effluent, Biomass, Molecular Biology, Sewage, Tertiary treatment, Fermentation safety; GMM fate; Industrial effluent; Modelling; Municipal wastewater treatment plant; Tertiary treatment, General Medicine, Energy Research, Aerobiosis, 620, Disinfection, GMM fate, Microorganisms, Genetically-Modified, Biotechnology, Environmental Monitoring
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
