Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Nexusarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Nexus
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Nexus
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal analysis of solar energy based organic Rankine cycle cascaded with vapor compression refrigeration cycle

Authors: Mohammad Faizan Qureshi; Mohammad Waqas Chandio; Abdul Aleem Memon; Laveet Kumar; Mohamed M. Awad;

Thermal analysis of solar energy based organic Rankine cycle cascaded with vapor compression refrigeration cycle

Abstract

The air conditioning and refrigeration applications use a significant portion of the electrical energy. This research analyses a performance of refrigeration system, which comprises on different configurations of solar based organic Rankine cycle (ORC) and vapor compression refrigeration (VCR) cycles requiring low evaporation temperatures. In this research, the dry natural hydrocarbons such as n-Decane, n-Dodecane and Toluene have been chosen to serve as the working fluids in ORC. Whereas in VCR cycle natural hydrocarbons such as Ethane, Propane, isobutane, isopentane and isohexane have been used because traditional working fluids have a negative environmental impact due to high values of ozone depletion and global warming potential. The simulated results showed that the facility can be operated efficiently with the use solar thermal energy resources within the temperature range 90 to 315ºC and decreasing the need for conventional fossil fuel resources. It was also revealed that the highest efficiency was achieved by n-Dodecane in regenerative ORC, which is 35.34 % at the evaporation temperature of 315ºC and the highest overall coefficient of performance (COPoverall) in regenerative ORCCRS facility was achieved by n-Dodecane in ORC and isopentane in refrigeration cycle which is 1.017 while in case of Simple ORC–VCR facility the highest COPoverall was achieved by Toluene in ORC and isopentane in refrigeration cycle, which is 0.7174 at the evaporation temperature 315ºC.

Keywords

Dry natural hydrocarbons, Agriculture (General), Vapor compression cycle, TJ807-830, Organic rankine cycle, Environment destruction, Renewable energy sources, S1-972, Overall coefficient of performance, Low evaporation temperature

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold