
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Reservoir stability in the process of natural gas hydrate production by depressurization in the shenhu area of the south China sea

Reservoir stability is a key factor in the production of natural gas hydrate (NGH), and also a prerequisite to ensuring safe and efficient NGH production. However, it has been rarely discussed. To analyze the reservoir stability in the process of NGH production by depressurization in the Shenhu area of the South China Sea, we established a 3D geological model of NGH production by depressurization on the basis of NGH drilling data in this area, which was then discretized by means of nonstructural grid. Then, the mathematical model coupling four fields (i.e. thermal, hydraulic, solid and chemical) was established considering the heat and mass transfer process and sediment transformation process during NGH production. The model was solved by the finite element method together with the nonstructural grid technology, and thus the time-space evolution characteristics of reservoir pore pressure, temperature, NGH saturation and stress in the condition of NGH production by depressurization were determined. Finally, reservoir subsidence, stress distribution and stability in the process of NGH production by depressurization in the Shenhu area were analyzed. The results obtained are as follows. First, the higher the reservoir permeability and the larger the bottomhole pressure drop amplitude are, the larger the subsidence amount and the higher the subsiding speed. Second, as the reservoir pore pressure decreases in the process of production, the effective stress increases and the shear stress near the well increases obviously, resulting in shear damage easily. Third, the increase of effective reservoir stress leads to reservoir subsidence, which mainly occurs in the early stage of NGH production. After the production for 60 days, the maximum reservoir subsidence reached 32 mm and the maximum subsidence of seabed surface was 14 mm. In conclusion, the NGH reservoirs in the Shenhu area of the South China Sea are of low permeability and the effect range of reservoir pressure drop is limited, so the reservoirs would not suffer from shear damage in the sixty-day-production period. Keywords: South China sea, Shenhu area, Natural gas hydrate (NGH), Natural gas hydrate production by depressurization, Effective stress, Reservoir stability, Multi-field coupling numerical simulation
- Jilin University China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Qingdao Institute of Marine Geology China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Guangzhou Institute of Energy Conversion China (People's Republic of)
Gas industry, TP751-762
Gas industry, TP751-762
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).75 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
