Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Natural Gas Industry...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Natural Gas Industry B
Article . 2018 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Natural Gas Industry B
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Natural Gas Industry B
Article . 2018
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reservoir stability in the process of natural gas hydrate production by depressurization in the shenhu area of the south China sea

Authors: Qiang Chen; Nengyou Wu; Changling Liu; Guangrong Jin; Xin Xin; Gaowei Hu; Yizhao Wan;

Reservoir stability in the process of natural gas hydrate production by depressurization in the shenhu area of the south China sea

Abstract

Reservoir stability is a key factor in the production of natural gas hydrate (NGH), and also a prerequisite to ensuring safe and efficient NGH production. However, it has been rarely discussed. To analyze the reservoir stability in the process of NGH production by depressurization in the Shenhu area of the South China Sea, we established a 3D geological model of NGH production by depressurization on the basis of NGH drilling data in this area, which was then discretized by means of nonstructural grid. Then, the mathematical model coupling four fields (i.e. thermal, hydraulic, solid and chemical) was established considering the heat and mass transfer process and sediment transformation process during NGH production. The model was solved by the finite element method together with the nonstructural grid technology, and thus the time-space evolution characteristics of reservoir pore pressure, temperature, NGH saturation and stress in the condition of NGH production by depressurization were determined. Finally, reservoir subsidence, stress distribution and stability in the process of NGH production by depressurization in the Shenhu area were analyzed. The results obtained are as follows. First, the higher the reservoir permeability and the larger the bottomhole pressure drop amplitude are, the larger the subsidence amount and the higher the subsiding speed. Second, as the reservoir pore pressure decreases in the process of production, the effective stress increases and the shear stress near the well increases obviously, resulting in shear damage easily. Third, the increase of effective reservoir stress leads to reservoir subsidence, which mainly occurs in the early stage of NGH production. After the production for 60 days, the maximum reservoir subsidence reached 32 mm and the maximum subsidence of seabed surface was 14 mm. In conclusion, the NGH reservoirs in the Shenhu area of the South China Sea are of low permeability and the effect range of reservoir pressure drop is limited, so the reservoirs would not suffer from shear damage in the sixty-day-production period. Keywords: South China sea, Shenhu area, Natural gas hydrate (NGH), Natural gas hydrate production by depressurization, Effective stress, Reservoir stability, Multi-field coupling numerical simulation

Related Organizations
Keywords

Gas industry, TP751-762

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 1%
Top 10%
Top 10%
gold