Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Petroleum...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Petroleum Science and Engineering
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of thermal stimulation on the methane hydrate dissociation in porous media under confined reservoir

Authors: Jitendra S. Sangwai; S. Ramesh; Vishnu Chandrasekharan Nair; G. A. Ramadass;

Influence of thermal stimulation on the methane hydrate dissociation in porous media under confined reservoir

Abstract

Abstract The kinetics of methane gas hydrate under confined environment in porous media have been studied for understanding the formation and dissociation behavior under this condition. We have developed a replica of natural hydrate-bearing atmosphere in a laboratory scale experimental set-up and examined the silica sand size effect on the formation and gas recovery in the presence of both pure water and seawater under confined reservoir conditions. Four sizes of silica sand particles were used in the present study (S1 (0.16 mm), S2 (0.46 mm), S3 (0.65 mm) and S4 (0.92 mm)). The formation experiments were done with 70% water saturation both for pure water and seawater. All these experiments were carried out at 277.15 K and 8 MPa. It is perceived that the gas consumption in the presence of smaller size sand particles is higher as compared to the larger size. The total consumption of methane gas during hydrate formation has been found to be less in the presence of seawater as compared to pure water. Subsequently, dissociation experiments have been carried out under confined reservoir conditions using thermal stimulation from 277.15 K to 303.15 K for 2 h. Gas recovery and dissociation rates are found to be higher in the smaller size silica sand bed in pure water as compared to bigger ones and seawater. Also, the maximum rate of dissociation was occurred at the near-equilibrium condition of pure methane hydrate system. Further insights into the dissociation behavior of methane hydrate under confined reservoir conditions have also been presented.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 1%
Top 10%
Top 10%