
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Accelerating gas production of the depressurization-induced natural gas hydrate by electrical heating

Accelerating gas production of the depressurization-induced natural gas hydrate by electrical heating
Abstract Natural gas hydrate (NGH) will be one of the major future energy sources due to its properties of clean energy and large reserves. Depressurization is proposed as an effective method to extract natural gas from hydrate, however, the gas production from hydrate dissociation may be interrupted by ice generation and hydrate re-formation due to insufficient heat supply in the single depressurization process. To solve this issue, this work conducted simulation on accelerating gas production from the depressurization-induced methane hydrate by electrical heating. The continuous heating and intermittent heating modes were employed and then the electrical heating scheme was optimized for the comprehensive effect of high energy efficiency and high gas production rate. The results show that electrical heating is conducive to gas production from hydrate dissociation at a rapid rate. In the continuous heating, a high initial hydration saturation, low initial water saturation, low specific heat capacity, and high thermal conductivity result in the high gas generation rate and efficient electrical energy utilization (a large energy efficiency ratio). The intermittent heating has a higher efficient utilization of electrical energy than continuous heating. The optimal scheme is determined as the first-half heating type with the optimized electrical heating power of 25.6 W and the heating time of 12.5 min by the gradient descent method of AdaGrad. Compared to the baseline continuous heating case, the energy efficiency ratio (10.70) of the optimal scheme is enhanced by 24.7% with the average gas production rate (2.55 SmL/s) enhanced by 18.2%. It's hoped that the findings of this work can provide some insights into extracting natural gas from gas hydrate deposits.
- China University of Petroleum, Beijing China (People's Republic of)
- Tsinghua University China (People's Republic of)
- Tsinghua–Berkeley Shenzhen Institute China (People's Republic of)
- China University of Petroleum, Beijing China (People's Republic of)
- China University of Petroleum, East China China (People's Republic of)
6 Research products, page 1 of 1
- 2010IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
- 2007IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
