Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Physiology and...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Physiology and Biochemistry
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Leaf ascorbic acid level – Is it really important for ozone tolerance in rice?

Authors: Charles P. Chen; Matthias Wissuwa; Michael Frei; Yoshihisa Kohno; Juan Pariasca-Tanaka; Karl-Heinz Südekum;

Leaf ascorbic acid level – Is it really important for ozone tolerance in rice?

Abstract

Leaf ascorbic acid (ASA) level is thought to be an important trait conferring stress tolerance in plants, but definite evidence regarding its effectiveness in the breeding of stress tolerant crops is lacking. Therefore, the stress response of a rice TOS17 insertion mutant (ND6172) for a GDP-D-mannose-3',5'-epimerase gene, which is involved in ASA biosynthesis, was tested. Two fumigation experiments were conducted, in which rice plants (Oryza sativa L.) were exposed to (i) high ozone for ten days at the tillering stage (100 ppb, 7 h day⁻¹); and (ii) to four different ozone concentrations ranging from charcoal filtered air to 2.5 times the ambient concentration for the entire growth season. The mutant ND6172 had around 20-30% lower ASA level than the wild-type (Nipponbare), and exhibited a moderately higher level of visible leaf symptoms due to ozone exposure. Differences in ASA level between ND6172 and Nipponbare led to differential responses of the glutathione level, and the activities of glutathione reductase, ascorbate peroxidase, and dehydroascorbate reductase. With season-long ozone fumigation, yields and yield components were not negatively affected at ambient ozone level in both genotypes, but showed stronger decreases in ND6172 at higher ozone levels, especially at 2.5 times the ambient level. Similarly, the mature straw of ND6172 exhibited a higher degree of lignification at the 2.5 times ambient ozone level. In conclusion, a difference in leaf ASA level of around 20-30% is relevant for ozone tolerance in rice at levels exceeding the current ambient ozone concentrations.

Keywords

Genotype, Ascorbic Acid, Ascorbate Peroxidases, Oxidants, Photochemical, Ozone, Gene Expression Regulation, Plant, Biomass, Photosynthesis, Plant Proteins, Oryza, Adaptation, Physiological, Glutathione, Biosynthetic Pathways, Plant Leaves, Mutagenesis, Insertional, Oxidative Stress, Glutathione Reductase, Phenotype, Carbohydrate Epimerases, Oxidoreductases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%