Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Powder Technologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Powder Technology
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CFD-DEM study of the effects of food grain properties on drying and shrinkage in a fluidised bed

Authors: Qinfu Hou; Aibing Yu; Aibing Yu; Jannatul Azmir;

CFD-DEM study of the effects of food grain properties on drying and shrinkage in a fluidised bed

Abstract

Abstract Drying is the most important post-harvest processing method for the long-term storage of food grains. Drying and related particle shrinkage are usually determined by various operational conditions and grain properties like grain size, density and initial moisture content. The impact of these food grain properties on drying and shrinkage is investigated by the recently developed computational fluid dynamics-discrete element method drying and shrinkage model. First, particle mixing in a fluidised bed and general drying characteristics are discussed followed by the contribution of different heat transfer modes on fluidised bed drying. The particle scale investigation found that the convective heat transfer is dominant, but the conductive heat transfer becomes important at low air velocities. Then the effect of grain size, density and initial moisture content on drying rate are quantified in terms of drying rate. The drying rate increases exponentially with decreasing grain size, but a slightly smaller drying rate is observed with decreasing initial moisture content and grain density. The shrinkage rate, resembling the drying rate, increases with decreasing grain size or increasing initial moisture content and grain density. Finally, the effects of these food grain properties on the drying quality, quantified by moisture and grain size distributions, are evaluated in this study. The grain scale results revealed that the uniformity of moisture and grain size distributions increases with increasing grain size, decreasing initial moisture content or decreasing grain density. The findings should be useful for a better understanding and control of the drying process in the fluidised bed.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%