Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the Combustion Institute
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A kinetic modeling study on the oxidation of primary reference fuel–toluene mixtures including cross reactions between aromatics and aliphatics

Authors: Sakai, Y.; Miyoshi, A.; Koshi, M.; Pitz, W. J.;

A kinetic modeling study on the oxidation of primary reference fuel–toluene mixtures including cross reactions between aromatics and aliphatics

Abstract

Abstract A detailed chemical kinetic model for the mixtures of primary reference fuel (PRF: n -heptane and iso-octane) and toluene has been proposed. This model is divided into three parts; a PRF mechanism [T. Ogura, Y. Sakai, A. Miyoshi, M. Koshi, P. Dagaut, Energy Fuels 21 (2007) 3233–3239], toluene sub-mechanism and cross reactions between PRF and toluene. Toluene sub-mechanism includes the low temperature kinetics relevant to engine conditions. A chemical kinetic mechanism proposed by Pitz et al. [W.J. Pitz, R. Seiser, J.W. Bozzelli, et al., in: Chemical Kinetic Characterization of the Combustion of Toluene, Proceedings of the Second Joint Meeting of the U.S. Sections of the Combustion Institute , 2001] was used as a starting model and modified by updating rate coefficients. Theoretical estimations of rate coefficients were performed for toluene and benzyl radical reactions important at low temperatures. Cross reactions between alkane, alkene, and aromatics were also included in order to account for the acceleration by the addition of toluene into iso-octane recently found in the shock tube study of the ignition delay [Y. Sakai, H. Ozawa, T. Ogura, A. Miyoshi, M. Koshi, W.J. Pitz, Effects of Toluene Addition to Primary Reference Fuel at High Temperature , SAE 2007-01-4104, 2007]. Validations of the model were performed with existing shock tube and flow tube data. The model well predicts the ignition characteristics of PRF/toluene mixtures under the wide range of temperatures (500–1700 K) and pressures (2–50 atm). It is found that reactions of benzyl radical with oxygen molecule determine the reactivity of toluene at low temperature. Although the effect of toluene addition to iso-octane is not fully resolved, the reactions of alkene with benzyl radical have the possibility to account for the kinetic interactions between PRF and toluene.

Country
United States
Keywords

Acceleration, Combustion, Alkenes, 37 Inorganic, Oxidation, Shock Tubes, Engines, Organic, Ignition, Oxygen, Kinetics, Aromatics, Mixtures, Physical And Analytical Chemistry, 30 Direct Energy Conversion, Simulation, Toluene, Benzyl Radicals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    95
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
95
Top 10%
Top 10%
Top 10%
bronze