
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental study of influence of temperature on fuel-N conversion and recycle NO reduction in oxyfuel combustion

handle: 1959.13/1065106
Experimental study of influence of temperature on fuel-N conversion and recycle NO reduction in oxyfuel combustion
Abstract Coal combustion in O2/CO2 environment was examined with a bituminous coal in which the gas-phase and char combustion stages were considered separately. The effects of temperature (1000–1300 °C) and the excess oxygen ratio λ (0.6–1.4) on the conversion of volatile-N and char-N to NOx were studied. Also, the reduction of recycle NOx by fuel-N was investigated under various conditions. The results show that fuel-N conversion to NO in O2/CO2 is lower than that in O2/N2. In O2/CO2 atmosphere, the volatile-N conversion ratios vary from 1–7% to 15–24% under fuel-rich and fuel-lean conditions, respectively. The char-N conversion ratios are 11–28% and 30–50% under fuel-rich and fuel-lean conditions, respectively. The influences of temperature on the conversion of volatile-N to NO under fuel-rich and fuel-lean conditions are contrary. A significant difference for char-N conversion in fuel-rich and fuel-lean conditions is observed. The experimental data of recycle NO reduction indicate that the reduction of recycle NO by gas-phase reaction can be enhanced by volatile-N addition in fuel-lean condition at high temperature, while in fuel-rich condition, the volatile-N influence cancelled out and the overall impact is small. NO/char reaction competes with the conversion of fuel-N to NO at higher temperatures.
- National Research Council Italy
- University of Newcastle Australia Australia
- University of Newcastle Australia Australia
- Harbin Institute of Technology China (People's Republic of)
- Harbin Institute of Technology China (People's Republic of)
660, recycle NO, O₂/CO₂combustion, oxyfuel, fuel nitrogen
660, recycle NO, O₂/CO₂combustion, oxyfuel, fuel nitrogen
15 Research products, page 1 of 2
- 1996IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 1995IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).56 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
