
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Rapid climate change and no-analog vegetation in lowland Central America during the last 86,000 years
handle: 20.500.12010/9905
Glacial–interglacial climate cycles are known to have triggered migrations and reassortments of tropical biota. Although long-term precessionally-driven changes in temperature and precipitation have been demonstrated using tropical sediment records, responses to abrupt climate changes, e.g. the cooling of Heinrich stadials or warmings of the deglaciation, are poorly documented. The best predictions of future forest responses to ongoing warming will rely on evaluating the influences of both abrupt and long-term climate changes on past ecosystems. A sedimentary sequence recovered from Lake Peten-Itza, Guatemalan lowlands, provided a natural archive of environmental history. Pollen and charcoal analyses were used to reconstruct the vegetation and climate history of the area during the last 86,000 years. We found that vegetation composition and air temperature were strongly influenced by millennial-scale changes in the North Atlantic Ocean. Whereas Greenland warm interstadials were associated with warm and relatively wet conditions in the Central American lowlands, cold Greenland stadials, especially those associated with Heinrich events, caused extremely dry and cold conditions. Even though the vegetation seemed to have been highly resilient, plant associations without modern analogs emerged mostly following sharp climate pulses of either warmth or cold, and were paralleled by exceptionally high rates of ecological change. Although pulses of temperature change are evident in this 86,000-year record none matched the rates projected for the 21st Century. According to our findings, the ongoing rapid warming will cause no-modern-analog communities, which given the improbability of returning to lower-than-modern CO2 levels, anthropogenic barriers to migration, and increased anthropogenic fires, will pose immense threats to the biodiversity of the region.
- Lawrence Berkeley National Laboratory United States
- Florida Southern College United States
- Lawrence Berkeley National Laboratory United States
- University of Cambridge United Kingdom
- Florida Institute of Technology United States
Last Glacial Maximum, Central America, Ecological change, Heinrich stadials, Climate change, Paleoecology, Cambios climáticos -- Investigaciones, Mitigación del cambio climático, Paleoclimatology
Last Glacial Maximum, Central America, Ecological change, Heinrich stadials, Climate change, Paleoecology, Cambios climáticos -- Investigaciones, Mitigación del cambio climático, Paleoclimatology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).110 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
