
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evidence for ecosystem state shifts in Alaskan continuous permafrost peatlands in response to recent warming

Evidence for ecosystem state shifts in Alaskan continuous permafrost peatlands in response to recent warming
Peatlands in continuous permafrost regions represent a globally-important store of organic carbon, the stability of which is thought to be at risk under future climatic warming. To better understand how these ecosystems may change in a warmer future, we use a palaeoenvironmental approach to reconstruct changes in two peatlands near Toolik Lake on Alaska's North Slope (TFS1 and TFS2). We present the first testate amoeba-based reconstructions from peatlands in continuous permafrost, which we use to infer changes in water-table depth and porewater electrical conductivity during the past two millennia. TFS1 likely initiated during a warm period between 0 and 300 CE. Throughout the late-Holocene, both peatlands were minerotrophic fens with low carbon accumulation rates (means of 18.4 and 14.2 g C m−2 yr−1 for cores TFS1 and TFS2 respectively). However, since the end of the Little Ice Age, both fens have undergone a rapid transition towards oligotrophic peatlands, with deeper water tables and increased carbon accumulation rates (means of 59.5 and 48.2 g C m−2 yr−1 for TFS1 and TFS2 respectively). We identify that recent warming has led to these two Alaskan rich fens to transition into poor fens, with greatly enhanced carbon accumulation rates. Our work demonstrates that some Arctic peatlands may become more productive with future regional warming, subsequently increasing their ability to sequester carbon.
- University of Łódź Poland
- Queen's University Belfast United Kingdom
- White Rose Consortium: University of Leeds; University of Sheffield; University of York United Kingdom
- White Rose Consortium: University of Leeds; University of Sheffield; University of York United Kingdom
- University of Exeter United Kingdom
/dk/atira/pure/subjectarea/asjc/2300/2306, 570, Evolution, Arctic, Behavior and Systematics, /dk/atira/pure/sustainabledevelopmentgoals/climate_action, name=Ecology, SDG 13 - Climate Action, Climate change, Global and Planetary Change, name=Global and Planetary Change, Ecology, Holocene, name=Geology, /dk/atira/pure/subjectarea/asjc/1900/1907, Geology, name=SDG 13 - Climate Action, Archaeology, name=Archaeology, /dk/atira/pure/subjectarea/asjc/3300/3302, Hydrology, Reconstruction, Testate amoebae, /dk/atira/pure/subjectarea/asjc/1100/1105, /dk/atira/pure/subjectarea/asjc/1200/1204
/dk/atira/pure/subjectarea/asjc/2300/2306, 570, Evolution, Arctic, Behavior and Systematics, /dk/atira/pure/sustainabledevelopmentgoals/climate_action, name=Ecology, SDG 13 - Climate Action, Climate change, Global and Planetary Change, name=Global and Planetary Change, Ecology, Holocene, name=Geology, /dk/atira/pure/subjectarea/asjc/1900/1907, Geology, name=SDG 13 - Climate Action, Archaeology, name=Archaeology, /dk/atira/pure/subjectarea/asjc/3300/3302, Hydrology, Reconstruction, Testate amoebae, /dk/atira/pure/subjectarea/asjc/1100/1105, /dk/atira/pure/subjectarea/asjc/1200/1204
5 Research products, page 1 of 1
- 1991IsAmongTopNSimilarDocuments
- 1996IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
