Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Passive thermal energy storage, part 2: Design methodology for solaria and greenhouses

Authors: Andreas K. Athienitis; Diane Bastien;

Passive thermal energy storage, part 2: Design methodology for solaria and greenhouses

Abstract

Abstract This paper presents a methodology for sizing passive thermal energy storage (TES) systems in solaria and greenhouses. Six different configurations are investigated, which encompass the most frequent cases. These configurations are studied with two complementary approaches: frequency response (FR) and finite difference thermal network (FD). FR models are used for sensitivity studies under short periodic design sequences while FD models are used in full-year performance assessments with real weather data. The most relevant performance variables for characterizing TES in solaria and greenhouses were identified in Part 1. In this paper, simulation results of these key variables are presented under varying conditions. A methodology for sizing TES in solaria and greenhouses is presented along with design recommendations. The energy balance equations for six different configurations are included in order to make the methodology applicable to a variety of designs. The methodology is based on a FR model with a simulation design period of five cold sunny days followed by five cold cloudy days; this sequence is representative of the most extreme conditions in a year and thus provides a good basis for the comparative assessment of design improvements.

Powered by OpenAIRE graph
Found an issue? Give us feedback