Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Loop bioenergy production and carbon sequestration of polymeric waste by integrating biochemical and thermochemical conversion processes: A conceptual framework and recent advances

Authors: Zhang Hua; Pinjing He; Liming Shao; Fan Lü;

Loop bioenergy production and carbon sequestration of polymeric waste by integrating biochemical and thermochemical conversion processes: A conceptual framework and recent advances

Abstract

Abstract Large volumes of polymeric waste, including natural biomass residues and synthetic waste, motivate the development of a general, robust and flexible process for mining the energy and resources contained in these wastes. By analyzing the positive and negative aspects of current, conventional technologies for the recovery of energy from polymeric waste, an integrated concept of a hybrid technology combining biochemical (anaerobic digestion, gas fermentation, carbon chain elongation) and thermochemical conversion processes (pyrolysis, gasification, hydrothermal carbonization) was proposed. The hybrid technology aims at simultaneously enhancing the efficiency and stability of biochemical conversion, controlling the gaseous and aqueous pollution from thermochemical conversion, and sequestering carbon. This paper presents a detailed review of state-of-the-art research relating to the principles, technical feasibility and practices involved in each technical link between the two conversion processes.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback