Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Strategy for wind power plant contribution to frequency control under variable wind speed

Authors: Zhe Chen; Weihao Hu; Weihao Hu; Qi Huang; Pengfei Li; Jun Yao; Rui Hu;

Strategy for wind power plant contribution to frequency control under variable wind speed

Abstract

Abstract Current constraints require limiting the power transmitted from wind farms to power grids. Hence, wind turbine systems should be capable of regulating and limiting the generation capacity for a wide range of operating wind speeds. In addition, wind power plants must be endowed with active power and frequency control capabilities. In a single wind farm, wind turbines can be installed at different heights or altitudes, consequently exposing them to variable environmental conditions that can cause variations among their surrounding wind speeds. Thus, we propose a de-loading control strategy that integrates over-speeding and pitch control of wind turbines operating at variable wind speeds. This strategy allows not only storing power to satisfy the constraint demand of the power grid, but also contributing to primary frequency control. In fact, the proposed control strategy can adjust the static frequency difference coefficient of wind turbines, which is based on the proportion of variable-speed wind turbines operating under high wind speeds. Moreover, the proposed control strategy, which supports frequency control of the power grid under power constraints, suitably supports the frequency regulation of wind turbines that work at different wind speeds. Simulation results suggest that the proposed control strategy meets the power grid constraints, enhances the performance of primary frequency control, alleviates the frequency control pressure from thermal power plants, and appropriately generates curtailed wind power under variable wind speeds.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 1%
Top 10%
Top 1%
bronze