Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An integrated approach for wind turbine gearbox fatigue life prediction considering instantaneously varying load conditions

Authors: Zhigang Tian; Fuqiong Zhao; Fangfang Ding; Hao Xu;

An integrated approach for wind turbine gearbox fatigue life prediction considering instantaneously varying load conditions

Abstract

Abstract Wind power is a significant clean energy source. Operation & maintenance (O&M) costs account for about 25% of the cost of wind power, and it is critical to improve the reliability of wind power generators to reduce the overall cost and increase wind power competitiveness comparing to other power sources. Wind turbines are subject to instantaneously varying load due to wind turbulence, which challenges the prognostic study for predicting equipment future health conditions and remaining useful lives. With existing prognostics methods, the average constant load is typically used to approximate the varying external load. In this paper, an integrated varying-load approach is proposed for predicting wind turbine gearbox remaining useful life by specifically considering instantaneously varying external load, which is more realistic. Fatigue crack damage is focused on. The method integrates gear physical models and available health condition data, and the distribution of uncertain material parameter modeled in crack degradation process is updated via Bayesian inference once new health condition data become available. Examples are provided to demonstrate the effectiveness of the proposed varying-load approach. A comparative study is conducted between the proposed approach and existing constant-load approximation method, and the results show that the proposed varying-load approach can provide more accurate prediction.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%