
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Investigation on the sustainability and efficiency of single-well circulation (SWC) groundwater heat pump systems

Abstract Among various groundwater heat pump (GWHP) system configurations, the single-well circulation (SWC) groundwater heat pump system is totally different with other conventional GWHP systems. In recent years, the SWC system has gained increasing interest due to the fact that it is a cost-effective technology providing large quantities of heating and cooling to buildings. The performance of a SWC system is closely related to the hydrogeological and thermogeological properties. Also, the proper system design and installation are crucial to maintain long-term sustainability and efficiency. In this work, a series of scenarios were simulated to evaluate the influence of different parameters on the outlet temperature evolution and efficiency of a SWC system. It was found that the W-S mode with active cooling will be beneficial to the efficiency of the heat pump and the recovery of the subsurface. It is also demonstrated that the sealed section length plays the most influential role in the design of a SWC system. In addition, the present of groundwater flow will have positive effect on the system performance. In contrast to other factors, the thermal conductivity, volumetric heat capacity and porosity are considered to have a minor influence on the sustainability and efficiency of the system.
- University of Technology Russian Federation
- Dresden University of Technology Germany
- China University of Mining and Technology China (People's Republic of)
- China University of Mining and Technology China (People's Republic of)
- Helmholtz Centre for Environmental Research Germany
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
