Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulated local climatic impacts of large-scale photovoltaics over the barren area of Qinghai, China

Authors: Rui Chang; Yong Luo; Rong Zhu;

Simulated local climatic impacts of large-scale photovoltaics over the barren area of Qinghai, China

Abstract

Abstract Solar energy has developed rapidly in recent years, and its impacts on climate have been revealed mainly through model simulations and limited field observations. However, the representation of solar plants in these models is highly simplistic and does not account for dynamical effects, which may pose risks under the simulations for tracking photovoltaics (PV). To make a more comprehensive assessment of the PV-induced climatic impacts, it is relevant to further develop a more sophisticated PV module based on the observed PV-induced impacts from specific cases. To remedy the deficiencies in the existing PV energy models, the newly sophisticated PV module established in this paper includes both the land surface radiation balance, sensible heat balance and the surface physical dray process over the locations of PV plants. It is then used to simulate the local climatic impacts of PV plants through three parallel sensitivity experiments. Comparison analysis between control run and two PV installation scenarios showed obvious changes in the 10-m wind speed, land surface temperature, and 2-m specific humidity were found locally over the locations of PV plants during both the warm and cold periods. The magnitudes of these changes are positively related to the installed capacity of the PV plants, but are much smaller than the natural climate variations. It is expected that the observation-based PV module established in this paper is a meaningful attempt for the model simulation on this field.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%