
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Sub-hourly forecasting of wind speed and wind energy

Abstract The need to have access to accurate short term forecasts is essential in order to anticipate the energy production from intermittent renewable sources, notably wind energy. For hourly and sub-hourly forecasts, benchmarks are based on statistical approaches such as time series based methods or neural networks, which are always tested against persistence. Here we discuss the performances of downscaling approaches using information from Numerical Weather Prediction (NWP) models, rarely used at those time scales, and compare them with the statistical approaches for the wind speed forecasting at hub height. The aim is to determine the added value of Model Output Statistics for sub-hourly forecasts of wind speed, compared to the classical time series based methods. Two downscaling approaches are tested: one using explanatory variables from NWP model outputs only and another which additionally includes local wind speed measurements. Results of both approaches and of the classical time series based methods, tested against persistence on a specific wind farm, are considered. For both hourly and sub-hourly forecasts, adding explanatory variables derived from observations in the downscaling models gives higher improvements over persistence than the benchmark methods and than the downscaling models using only the NWP model outputs.
- Sorbonne Paris Cité France
- Laboratoire d'informatique de Paris 6 France
- French National Centre for Scientific Research France
- École Polytechnique France
- INSTITUT POLYTECHNIQUE DE PARIS France
[SPI]Engineering Sciences [physics], [SPI] Engineering Sciences [physics]
[SPI]Engineering Sciences [physics], [SPI] Engineering Sciences [physics]
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).85 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
