Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Croatian Scientific ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical study of biomass Co-firing under Oxy-MILD mode

Authors: Xuebin Wang; Jiaye Zhang; Xinwei Xu; Hrvoje Mikulčić; Yan Li; Yuegui Zhou; Houzhang Tan;

Numerical study of biomass Co-firing under Oxy-MILD mode

Abstract

Oxy-MILD (Oxygen Moderate and Intense Low- Oxygen Dilution) combustion is one of the most promising technologies for the mitigation of CO2 emissions from coal-fired furnaces, benefiting from its good performance in flame- temperature controlling and NOx reduction. Under oxy-MILD mode, the combustion or co- firing of biomass (CO2-neutral) can achieve “negative CO2 emissions”. In this paper, oxy- MILD biomass co-firing is numerically studied by CFD modeling for the IFRF furnace NO.1, where Guasare coal and Olive waste are co-fired under air-MILD and oxy-MILD conditions, respectively. The effects of biomass co-firing ratio (0–30%, energy basis) and atmosphere on the temperature and heat flux distribution, and NOx emissions are discussed. The modeling results show that under MILD combustion mode, both oxy-combustion and biomass co-firing can generate a more moderate temperature distribution and lower NOx emissions than air- combustion and coal combustion, respectively. When biomass co-firing ratio increases from 0% to 30%, under oxy-MILD combustion mode, the peak temperature linearly decreases by 28 K and the NOx emissions decrease by 141 ppm ; while under air-MILD combustion mode, the peak temperature increases by 15 K and the NOx emissions decrease by only 73 ppm. This modeling work suggests that oxy-MILD biomass co-firing is a more promising technology to achieve “negative CO2 emissions” in coal combustion, with lower furnace temperatures as well as NOx emissions.

Country
Croatia
Related Organizations
Keywords

MILD combustion ; Oxy-combustion ; Biomass co-firing ; Temperature field ; NOx emissions, Temperature field, NOx emissions, MILD combustion, Oxy-combustion, Biomass co-firing

Powered by OpenAIRE graph
Found an issue? Give us feedback