Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)

Authors: Harish Venu; V. Dhana Raju; Lingesan Subramani; Prabhu Appavu;

Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)

Abstract

Abstract This work examines the feasibility of fuelling methyl ester derived from green algae, Chlorella emersonii in a compression ignition engine. This work also proposes Chlorella emersonii methyl ester (CEME) as a potential alternative energy source since the above species is available extensively in fresh water, marine and aquatic ecosystems throughout the world. CEME was blended with petroleum diesel fuel at various volume proportions of 10%, 20%, 30%, 40% and 100% and their properties were analyzed as per ASTM standards for its application as biofuel. The prepared test fuels were analyzed experimentally in a single cylinder diesel engine at constant speed (1500 rev/min) for its performance, combustion and emission (regulated and unregulated) characteristics. Test results projected that, the characteristics of 20% CEME+80%diesel fuel blend was in par with diesel fuel in terms of thermal efficiency, THC, CO and smoke emissions. However, CEME blends resulted in slightly higher levels of CO2 and NOx emissions. In terms of unregulated emissions, CEME blends in diesel showed lowered toluene and acetaldehyde emissions. However, acetone and formaldehyde emissions increased with higher percentage of CEME in diesel blend. At full load, the attained cylinder pressure and heat release rate of CEME were comparatively lower than diesel fuel.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    90
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
90
Top 1%
Top 10%
Top 1%