Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical study on the heat release capacity of the active-passive phase change wall affected by ventilation velocity

Authors: Yong Guan; Tuo Wang; Rui Tang; Wanling Hu; Jianxuan Guo; Huijun Yang; Yun Zhang; +1 Authors

Numerical study on the heat release capacity of the active-passive phase change wall affected by ventilation velocity

Abstract

Abstract The north wall of Chinese solar greenhouses (CSGs) plays an important role in maintaining their indoor thermal environment without additional heating during the wintertime. To enhance the heat storage/release capacity of the CSG wall and further improve the indoor thermal environment, an active-passive phase change thermal storage wall system has been developed in this study. The system was composed of 5 concentrating solar air collectors (CSACs), 6 tanks that were embedded in the north wall of the CSG and filled by phase change material (PCM), tubes linking the tanks and the CSACs and a centrifugal fan with variable-frequency drive (VFD). During the daytime, the solar energy was collected by the CSACs and stored in the tanks, whereas during the nighttime, the stored energy was released into the indoor environment of the CSG through a passive heat mode of the north wall or an active heat mode of the system. Then, a numerical model of the active-passive phase change thermal storage wall system has been developed. The simulation results were validated by the experimental data with the maximum relative error and average relative error being 5.6% and 3.9%, respectively. Furthermore, the heat release capacity characteristics in three cases with the air velocities of 2 m/s (Case A), 3 m/s (Case B) and 4 m/s (Case C) at indoor outlet for the active heat mode and a passive heating case (Case D) were chosen as the control groups for study. In the proposed wall, the heat release capacity of ventilation increased and that of inner surface of the wall declined with an increasing ventilation velocity. The total heat release capacities of the cases A, B and C were 38.12 MJ, 40.26 MJ, 42.00 MJ, respectively, higher than that of the case D (33.76 MJ). On the other hand, the calculated temperature distribution indicated that there was no thermal-stable layer within depth of the 360 mm in the wall due to an apparent temperature variation of the PCM layer by ventilation. These results suggested that the proposed system could effectively promote the heat storage/release capacity of the middle layer of the wall.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%