Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of biochar on emission, maturity and bacterial dynamics during sheep manure compositing

Authors: Yumin Duan; Ashok Pandey; Ashok Pandey; Sanjeev Kumar Awasthi; Zengqiang Zhang; Sang Hyoun Kim; Mukesh Kumar Awasthi; +2 Authors

Effect of biochar on emission, maturity and bacterial dynamics during sheep manure compositing

Abstract

Abstract The effects of bamboo biochar (BB) variables on gaseous emissions, maturity and microbial dynamics during composting of sheep manure were investigated. The experiments were conducted with six different ratio of BB (0%, 2%, 4%, 6%, 8% and 10% dry weight based) and 0% is compiled as control. The results showed that 10%BB provided rapid mineralization and less time duration of compost maturity. 10% BB has the excellent impact on greenhouse gas (GHG) emission reduction and nutrients conservation (nitrogen and carbon losses were 13.40 g/kg and 124.42 g/kg) as compared to other treatments. Control was significantly different from other treatments in terms of GHG emission and nitrogen loss and had the lowest germination index after 42 days composting. BB addition were the main factors influencing GHG emission and improve the bacterial abundance. There is a significant correlation among the analyzed physicochemical factors, gaseous emission and bacterial phylum is used 8–10% BB for SM composting. Higher percentages of BB not only reduced CH4 and N2O emissions but also showed significant influence on CO2 and NH3 losses as well as improve the end product quality.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 1%
Top 10%
Top 1%