Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions

Pyrolysis of saw dust with co-feeding of methanol

Authors: Kai Sun; Lijun Zhang; Qing Liu; Shu Zhang; Chao Li; Zhanming Zhang; Chenting Zhang; +3 Authors

Pyrolysis of saw dust with co-feeding of methanol

Abstract

Abstract Reaction atmosphere is one of the principle parameters affecting pyrolysis characteristics of biomass. In this study, instead of feeding reactive gases, methanol was co-fed in the pyrolysis of saw dust, aiming to understand the impacts of methanol on evolution of functionalities/structures of the major pyrolysis products. The results showed that at low pyrolysis temperature of 350 °C, methanol did not affect much on the charring reactions but promoted the formation of the heavier organics. At 500 or 650 °C, the co-feeding of methanol enhanced the yields of both char and the heavy components of bio-oil, resulting from the reaction of methanol or its derivatives with the organic components on surface of biochar via recombination/condensation reactions. In addition, methanol enhanced evolution of the organics with π-conjugated structures. The co-feeding of methanol also enhanced crystallinity and sizes of the crystal carbon in the biochar, but led to their lower thermal stability. The in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) characterization of saw dust pyrolysis indicated that methanol promoted the aliphatic structures formation on surface of the biochar, leading to the low thermal stability.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%