Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance study of a novel funnel shaped shell and tube latent heat thermal energy storage system

Authors: Sandip K. Saha; Ashish Kumar;

Performance study of a novel funnel shaped shell and tube latent heat thermal energy storage system

Abstract

Abstract The latent heat thermal energy storage system (LHTES) utilizes phase change material (PCM) to store energy. The non-uniformity in heat transfer between heat transfer fluid (HTF) and PCM along the height of the widely used vertical cylindrical shell and tube type storage tank causes a reduced thermal performance of the storage. Hence, in the present work, a passive heat transfer enhancement technique is proposed through a novel funnel shaped configuration of the shell and tube LHTES to achieve more uniform temperature distribution in the PCM as compared to the cylindrical shell and tube LHTES. Additionally, longitudinal fins are introduced in the HTF tube further to enhance the heat transfer between HTF and PCM. A numerical model is developed using the enthalpy-porosity technique to analyze the phase change phenomenon. The thermal performance of the funnel LHTES is evaluated using the first and second law of thermodynamics. The funnel LHTES with the lateral shell surface tilting up to a height of 250 mm shows higher melt fraction and energy efficiency by 11.5% and 66.6%, respectively compared to the cylindrical LHTES. The latent heat content of the funnel LHTES with a shell tilt height of 250 mm during the charging and discharging period is improved by 1.72 and 1.11 times, respectively than that of the cylindrical LHTES. A significant improvement in the rate of solidification of PCM during the discharging process is obtained with the funnel LHTES.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 1%
Top 10%
Top 1%
bronze