
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Leading edge erosion of wind turbine blades: Understanding, prevention and protection

Abstract Surface erosion of wind turbine blades is one of rather critical problems of the wind energy development. In this overview paper, recent studies in the mechanisms, modelling and possibilities of preventing the surface erosion of wind turbine blades are discussed. Latest research in the area of leading edge erosion (LEE) from different viewpoints, based on meteorology, aerodynamics, materials science, computational mechanics are summarized. Technologies of experimental testing of anti-erosion coatings, effect of leading edge erosion on aerodynamics of wind turbines, roughness and its evolution are discussed, as well as meteorological aspects, parameters and characteristics of precipitation, possibilities of prediction of rain and hail and regional differences. Further, computational models of LEE and directions of the development of anti-erosion coatings are presented.
- Technical University of Denmark Denmark
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).123 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
