Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable Energy
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable Energy
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2021
License: CC BY NC ND
Research Collection
Article . 2021
License: CC BY NC ND
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The fault plane as the main fluid pathway: Geothermal field development options under subsurface and operational uncertainty

Authors: Alexandros Daniilidis; Alexandros Daniilidis; Sanaz Saeid; Nima Gholizadeh Doonechaly;

The fault plane as the main fluid pathway: Geothermal field development options under subsurface and operational uncertainty

Abstract

Geothermal energy is gaining momentum as a renewable energy source. Reservoir simulation studies are often used to understand the underlying physics interactions and support decision making. Uncertainty related to geothermal systems can be substantial for subsurface and operational parameters and their interaction with regards to the output in terms of lifetime, energy and economic output. Specifically, for geothermal systems with the fault acting as the main fluid pathway the relevant field development uncertainties have not been comprehensively addressed. In this study we show how the produced energy, system lifetime and NPV are affected considering a range of subsurface and operational parameters as uncertainty sources utilizing an ensemble of 16,200 3D Hydraulic-Thermal (HT) reservoir simulations, conceptually based on the Rittershoffen field. A well configuration with oblique angles with respect to the main permeability anisotropy axes results in higher system lifetime, generated energy and NPV. A well spacing of 600 m consistently yields a higher economic efficiency (€/MWh) under all uncertainty parameters considered. More robust development options could be utilized in the absence of fault permeability characterization to ensure improved output prediction under uncertainty. Studies based on the methodology presented can improve investment efficiency for field development under subsurface and operational uncertainty.

Renewable Energy, 171

ISSN:0960-1481

ISSN:1879-0682

Countries
Netherlands, Switzerland
Related Organizations
Keywords

System lifetime, Fault anisotropy; Uncertainty; System Lifetime; NPV; Field development; Reservoir simulation, 550, Uncertainty, Reservoir simulation, NPV, Fault anisotropy, Field development, System Lifetime

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 18
    download downloads 16
  • 18
    views
    16
    downloads
    Data sourceViewsDownloads
    TU Delft Repository1816
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
19
Top 10%
Average
Top 10%
18
16
Green
hybrid