Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ St Andrews Research ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
St Andrews Research Repository
Article . 2021 . Peer-reviewed
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A modelling evaluation of electromagnetic fields emitted by buried subsea power cables and encountered by marine animals: Considerations for marine renewable energy development

Authors: Haibo He; Peter Sigray; Andrew B. Gill; Andrew B. Gill; Zoë L. Hutchison; Zoë L. Hutchison; Zoë L. Hutchison; +1 Authors

A modelling evaluation of electromagnetic fields emitted by buried subsea power cables and encountered by marine animals: Considerations for marine renewable energy development

Abstract

Abstract The expanding marine renewable energy industry will increase the prevalence of electromagnetic fields (EMFs) from power cables in coastal waters. Assessments of environmental impacts are required within licensing/permitting processes and increased prevalence of cables will increase questions concerning EMF emissions and potential cumulative impacts. It is presumed that protecting a cable by burial, may also mitigate EMF emissions and potential impacts on species. Focussing on a bundled high voltage direct current (HVDC) transmission cable, we use computational and interpretive models to explore the influence of cable properties and burial depth on the DC magnetic field (DC-MF) potentially encountered by receptive species. Greater cable pair separation increased the deviations from the geomagnetic field and while deeper burial reduced the deviations, the DC-MF was present at intensities perceivable by receptive species. An animal moving along a cable route may be exposed to variable EMFs due to varied burial depth and that combined with an animal's position in the water column determines the distance from source and EMF exposure. Modelling contextually realistic scenarios would improve assessments of potential effects. We suggest developers and cable industries make cable properties and energy transmission data available, enabling realistic modelling and environmental assessment supporting future developments.

Countries
United Kingdom, United States
Keywords

670, 550, Mitigation, Buried cable, Species perception, QH301 Biology, NDAS, AC, EMF propagation, Receptor species, QH301, cumulative impacts, SDG 7 - Affordable and Clean Energy, SDG 14 - Life Below Water, Cumulative impacts

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 1%
Green