
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling

Abstract This work introduces an assessment of the projected climatic changes in wind characteristics in Greece through the WRF model 5 × 5 km2, forced by the EC-EARTH Global Climate Model (GCM). Firstly, the model is validated against historic observations at 10 m, before being applied to the Representative Concentration Pathways (RCPs) 4.5 and 8.5 that represent an average expected future and a worst-case scenario. Projected changes in the mean annual wind speed at 100 m, between the historic (1980–2004) and future (2020–2044) scenarios are found to vary locally between −5% and +20%, whereas for the Wind Energy Density (WED) this variation lies between −15% and +60%. Overall, robust and significant increases regarding the mean wind speeds were found mainly over the north and central-western Aegean region, the Island of Crete, as well over Greek mainland and the Ionian Sea. Both scenarios predicted higher statistically significant increases in the Weibull shape parameter values (of about 0.2) in the north–central Aegean, while the summer seasonal analysis, yielded significant decreases over the western Ionian Sea and south and south-western parts of Crete, which might be indicative of more gusty events. Finally, extreme wind speeds analysis indicated increases, which might affect wind turbines structural integrity.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
