
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties

Abstract Co-pyrolysis of coke bottle (CB) with sawdust/cellulose/lignin was conducted at 700 °C in this study, aiming to understand the potential influence of interactions of the volatiles of the varied origins on properties of the char. The results indicated that the interaction of volatiles from CB with that from biomass enhanced cross-polymerization of the volatiles, decreasing the formation of gases while enhanced the formation of both char and oil. The cross-interactions of the intermediates also diminished the formation of π-conjugated organics. In addition, the varied volatiles from the pyrolysis of cellulose, lignin, or sawdust interacted with that from CB and affected the properties of char in different ways. The char from the co-pyrolysis of sawdust/CB was more aliphatic, and had a higher oxygen content (7.3%) and higher polarity but lower thermal stability. Additionally, the thermal stability, crystallinity as well as the evolution of functionalities of char versus increasing temperature were also significantly affected by the cross-interactions of the volatiles.
- Nanjing Forestry University China (People's Republic of)
- University of Jinan China (People's Republic of)
- Nanjing Forestry University China (People's Republic of)
- University of Jinan China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).60 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
