
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evaluating urban sustainability potential based on material flow analysis of inputs and outputs: A case study in Jinchang City, China

Abstract Many cities are facing environmental challenges with rapid urbanisation and industrialisation. It is critical to evaluate this new urban reality and its sustainability potential to generate appropriate solutions for a sustainable future. The urban metabolism framework is commonly applied to understand appropriate strategies to achieve sustainability for urban systems. In this study, material flow analysis was applied in conjunction with specific socio-economic indicators to model urban metabolism and evaluate appropriate urban metabolism changes for Jinchang City, China between 1995 and 2014. Structural decomposition analysis and decoupling analysis were used to explain and evaluate the sustainability potential of Jinchang City. Changes in material consumption and the waste generation of Jinchang City indicated a long-term unsustainable trajectory, evidenced by continuously increasing material inputs and outputs. We also found a significant reduction in air pollution, with declining sulphur dioxide emissions and dust; all are indicators of improvement in air quality. What is of special note is that industrial production was concurrently greatly increasing. These indicators suggest a positive improvement in sustainability beyond simple incrementalism. The study showed that MFA techniques can be used as valuable tools for understanding urban metabolism, evaluating urban sustainability, and suggesting strategies for the timely addressing of urban sustainability issues. This strategy is important in the face of China’s increasing industrial capacity.
- University of Queensland Australia
- University of Queensland Australia
- University of Queensland Australia
North-Western China, Urban metabolism, 720, 2002 Economics and Econometrics, 710, Urban sustainability, Decoupling, 2311 Waste Management and Disposal, Material inputs and outputs, Industrial city
North-Western China, Urban metabolism, 720, 2002 Economics and Econometrics, 710, Urban sustainability, Decoupling, 2311 Waste Management and Disposal, Material inputs and outputs, Industrial city
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
