Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Caltech Authorsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Remote Sensing of Environment
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accounting for canopy structure improves hyperspectral radiative transfer and sun-induced chlorophyll fluorescence representations in a new generation Earth System model

Authors: Renato K. Braghiere; Renato K. Braghiere; Christian Frankenberg; Daniel Sousa; Russell Doughty; Yujie Wang; Jean-Luc Widlowski; +5 Authors

Accounting for canopy structure improves hyperspectral radiative transfer and sun-induced chlorophyll fluorescence representations in a new generation Earth System model

Abstract

Abstract Three-dimensional (3D) vegetation canopy structure plays an important role in the way radiation interacts with the land surface. Accurately representing this process in Earth System models (ESMs) is crucial for the modeling of the global carbon, energy, and water cycles and hence future climate projections. Despite the importance of accounting for 3D canopy structure, the inability to represent such complexity at regional and global scales has impeded a successful implementation into ESMs. An alternative approach is to use an implicit clumping index to account for the horizontal heterogeneity in vegetation canopy representations in ESMs at global scale. This paper evaluates how modeled hyperspectral shortwave radiation partitioning of the terrestrial biosphere, as well as Sun-Induced Chlorophyll Fluorescence (SIF) are impacted when a clumping index parameterization is incorporated in the radiative transfer scheme of a new generation ESM, the Climate Model Alliance (CliMA). An accurate hyperspectral radiative transfer representation within ESMs is critical for accurately using of satellite data to confront, constrain, and improve land model processes. The newly implemented scheme is compared to Monte Carlo calculations for idealized scenes from the Radiation transfer Model Intercomparison for the Project for Intercomparison of Land-Surface Parameterizations (RAMI4PILPS), for open forest canopies both with and without snow on the ground. Results indicate that it is critical to account for canopy structural heterogeneity when calculating hyperspectral radiation transfer. The RMSE in shortwave radiation is reduced for reflectance (25%), absorptance (66%), and transmittance (75%) compared to the scenario without considering clumping. Calculated SIF is validated against satellite remote sensing data with the recently launched NASA Orbiting Carbon Observatory (OCO) 3, showing that including vertical and horizontal canopy structure when deriving SIF can improve model predictions in up to 51% in comparison to the scenario without clumping. By adding a clumping index into the CliMA-Land model, the relationship between canopy structure and SIF, Gross Primary Productivity (GPP), hyperspectral radiative transfer, and viewing geometry at the canopy scale can be explored in detail.

Country
United States
Keywords

550, Life on Land, Hyperspectral radiative transfer scheme, Earth System models, Energy balance, Carbon cycle, Geological & Geomatics Engineering, Physical Geography and Environmental Geoscience, Climate Action, Geomatic Engineering, Sun-induced chlorophyll fluorescence, NASA orbiting carbon observatory 3, Canopy structure

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 1%
Top 10%
Top 1%
Green