Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A review of wind speed probability distributions used in wind energy analysis

Authors: Sergio Velázquez; José A. Carta; Penélope Ramírez;

A review of wind speed probability distributions used in wind energy analysis

Abstract

Abstract The probability density function (PDF) of wind speed is important in numerous wind energy applications. A large number of studies have been published in scientific literature related to renewable energies that propose the use of a variety of PDFs to describe wind speed frequency distributions. In this paper a review of these PDFs is carried out. The flexibility and usefulness of the PDFs in the description of different wind regimes (high frequencies of null winds, unimodal, bimodal, bitangential regimes, etc.) is analysed for a wide collection of models. Likewise, the methods that have been used to estimate the parameters on which these models depend are reviewed and the degree of complexity of the estimation is analysed in function of the model selected: these are the method of moments (MM), the maximum likelihood method (MLM) and the least squares method (LSM). In addition, a review is conducted of the statistical tests employed to see whether a sample of wind data comes from a population with a particular probability distribution. With the purpose of cataloguing the various PDFs, a comparison is made between them and the two parameter Weibull distribution (W.pdf), which has been the most widely used and accepted distribution in the specialised literature on wind energy and other renewable energy sources. This comparison is based on: (a) an analysis of the degree of fit of the continuous cumulative distribution functions (CDFs) for wind speed to the cumulative relative frequency histograms of hourly mean wind speeds recorded at weather stations located in the Canarian Archipelago; (b) an analysis of the degree of fit of the CDFs for wind power density to the cumulative relative frequency histograms of the cube of hourly mean wind speeds recorded at the aforementioned weather stations. The suitability of the distributions is judged from the coefficient of determination R2. Amongst the various conclusions obtained, it can be stated that the W.pdf presents a series of advantages with respect to the other PDFs analysed. However, the W.pdf cannot represent all the wind regimes encountered in nature such as, for example, those with high percentages of null wind speeds, bimodal distributions, etc. Therefore, its generalised use is not justified and it will be necessary to select the appropriate PDF for each wind regime in order to minimise errors in the estimation of the energy produced by a WECS (wind energy conversion system). In this sense, the extensive collection of PDFs proposed in this paper comprises a valuable catalogue.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    733
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
733
Top 0.1%
Top 0.1%
Top 0.1%