Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials

Assessment and comparison of the performance of bio-based heat, power, fuels and materials
Authors: Gerssen-Gondelach, S. J.; Saygin, D.; Wicke, B.; Patel, M. K.; Faaij, A. P. C.;

Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials

Abstract

The increasing production of modern bioenergy carriers and biomaterials intensifies the competition for different applications of biomass. To be able to optimize and develop biomass utilization in a sustainable way, this paper first reviews the status and prospects of biomass value chains for heat, power, fuels and materials, next assesses their current and long-term levelized production costs and avoided emissions, and then compares their greenhouse gas abatement costs. At present, the economically and environmentally preferred options are wood chip and pellet combustion in district heating systems and large-scale cofiring power plants (75-81 US$(2005)/tCO(2)-eq(avoided)), and large-scale fermentation of low-cost Brazilian sugarcane to ethanol (-65 to -53 $/tCO(2)-eq(avoided)) or biomaterials (-60 to 50 $/tCO(2)-eq(avoided) for ethylene and -320 to -228 $/tCO(2)-eq(avoided) for PLA; negative costs represent cost- effective options). In the longer term, the cultivation and use of lignocellulosic energy crops can play an important role in reducing the costs and improving the emission balance of biomass value chains. Key conversion technologies for lignocellulosic biomass are large-scale gasification (bioenergy and biomaterials) and fermentation (biofuels and biomaterials). However, both routes require improvement of their technological and economic performance. Further improvements can be attained by biorefineries that integrate different conversion technologies to maximize the use of all biomass components. (C) 2014 Elsevier Ltd. All rights reserved.

Countries
Netherlands, Switzerland
Related Organizations
Keywords

BIOENERGY SYSTEMS, Technology review, Biomass value chains, Production costs, Biomaterials, valorisation, ETHANOL, SDG 13 - Climate Action, GHG abatement costs, GREENHOUSE-GAS, Bioenergy, SDG 7 - Affordable and Clean Energy, info:eu-repo/classification/ddc/333.7-333.9, info:eu-repo/classification/ddc/550, CLIMATE-CHANGE, TECHNOECONOMIC ANALYSIS, LIFE-CYCLE ASSESSMENT, PRODUCTION COSTS, ENERGY USE, SDG 12 - Responsible Consumption and Production, BULK CHEMICALS, NATURAL-GAS, ddc: ddc:550, ddc: ddc:333.7-333.9

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    138
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
138
Top 1%
Top 10%
Top 1%
Green
bronze