Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles

Authors: Agrafiotis, Christos; Roeb, Martin; Sattler, Christian;

A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles

Abstract

The high power density, ease of transportation and storage and many years of development of internal combustion engine technologies have put liquid hydrocarbon fuels at a privileged position in our energy mix. Therefore processes that use renewable energy sources to produce liquid hydrocarbon fuels from H2O and CO2 are of crucial importance. Concentrated Solar Power (CSP) can be employed as the only energy source for the renewable production of hydrogen from water either indirectly, e.g. by supplying the electricity for electrolysis, or directly by supplying the necessary heat for thermochemically producing hydrogen. Among the various thermochemical cycles tested so far for CSP-driven hydrogen production via water splitting (WS), those based on redox-pair oxide systems, are directly adaptable to carbon dioxide splitting (CDS) and/or combined CO2/H2O splitting for the production of CO or syngas, respectively. The acknowledgement of this fact has recently revived the interest of the scientific community on such technologies. The current article presents the development, evolution and current status of CSP-aided syngas production via such redox-pair-based thermochemical cycles. At first the various redox oxide material compositions tested for water/carbon dioxide splitting are presented and their redox chemistries are discussed. Then the selection of suitable solar reactors is addressed in conjunction with the boundary conditions imposed by the redox systems as well as the heat demands, technical peculiarities and requirements of the cycle steps. The various solar reactor concepts proposed and employed for such reactions and their current status of development are presented. Finally, topics where further work is needed for commercialization of the technology are identified and discussed.

Related Organizations
Keywords

Carbon dioxide splitting, Solar reactors, Water splitting, Solar syngas, Solar fuels, Thermochemical cycles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    350
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
350
Top 1%
Top 1%
Top 0.1%