
Found an issue? Give us feedback
Renewable and Sustainable Energy Reviews
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
A survey of health monitoring systems for wind turbines

NSF| IGERT: A New PhD Program in Wind Energy Science, Engineering and Policy
Authors: Mathew L. Wymore; Jeremy E. Van Dam; Halil Ceylan; Daji Qiao;
Abstract
Abstract Wind energy has played an increasingly vital role in renewable power generation, driving the need for more cost-effective wind energy solutions. Health monitoring of turbines could provide a variety of economic and other benefits to aid in wind growth. A number of commercial and research health monitoring systems have been implemented for wind turbines. This paper surveys these systems, providing an analysis of the current state of turbine health monitoring and the challenges associated with monitoring each of the major turbine components. This paper also contextualizes the survey with the various potential benefits of health monitoring for turbines.
Related Organizations
- Iowa State University United States
- Iowa State University United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).168 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
168
Top 1%
Top 1%
Top 1%
Beta
Fields of Science
Related to Research communities
Energy Research