
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production

Abstract Biodiesel (BD) is an alternative energy source to conventional diesel derived from fossil materials, which are unsustainable and non-renewable and contribute to global warming. BD production via transesterification with methanol leads to the synthesis of glycerol; this process accounts for 10% (w/w) of the total BD produced worldwide. The increasing demand for environmentally harmless BD has created a glycerol glut, which must be utilized to increase BD profitability. Glycerol is a stable and multifunctional compound used as a building block in fine chemical synthesis. Acetylation and carboxylation pathways have been studied to utilize and/or upgrade glycerol into fine chemicals. The use of catalysts, especially heterogeneous catalysts, remains the green approach for tailoring carboxylation and acetylation routes to achieve the desired products, namely, glycerol carbonate and glycerol acetyl esters, respectively. However, side-product formation, poorly structured channels of some catalysts, and catalyst deactivation or reusability hinder the effective utilization of heterogeneous catalysts and must be further studied. Moreover, introduction of variations to optimize reaction-influencing parameters is a potential green method that must be explored.
- Universiti Sains Malaysia Malaysia
- Universiti Sains Malaysia Malaysia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).190 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
