Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production

Authors: Patrick U. Okoye; B.H. Hameed;

Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production

Abstract

Abstract Biodiesel (BD) is an alternative energy source to conventional diesel derived from fossil materials, which are unsustainable and non-renewable and contribute to global warming. BD production via transesterification with methanol leads to the synthesis of glycerol; this process accounts for 10% (w/w) of the total BD produced worldwide. The increasing demand for environmentally harmless BD has created a glycerol glut, which must be utilized to increase BD profitability. Glycerol is a stable and multifunctional compound used as a building block in fine chemical synthesis. Acetylation and carboxylation pathways have been studied to utilize and/or upgrade glycerol into fine chemicals. The use of catalysts, especially heterogeneous catalysts, remains the green approach for tailoring carboxylation and acetylation routes to achieve the desired products, namely, glycerol carbonate and glycerol acetyl esters, respectively. However, side-product formation, poorly structured channels of some catalysts, and catalyst deactivation or reusability hinder the effective utilization of heterogeneous catalysts and must be further studied. Moreover, introduction of variations to optimize reaction-influencing parameters is a potential green method that must be explored.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    190
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
190
Top 1%
Top 10%
Top 1%