Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review

Authors: Mansir, Nasar; Siow, Hwa Teo; Rashid, Umer; Saiman, Mohd Izham; Yen, Ping Tan; Alsultan, G. Abdulkareem; Yap, Taufiq Yun Hin;

Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review

Abstract

Abstract Global energy crisis are as a result of gradual depletion of fossil fuel reserves, coupled with population growth in developing countries. Besides, fossil fuels are not environmentally benign as they are associated with problems, i.e. global warming, high toxicity and non biodegradability, hence it is considered as non sustainable source of energy. Without doubt, biofuel-based energy is a promising long-term energy source that can reduce the over dependence on fossil fuels as a result of feedstocks availability and renewability. However, biodiesel production from vegetable oil using the traditional homogeneous catalytic system is no longer defensible by industries in the near future, particularly due to food-fuel rivalry and ecological problems related to the conventional homogeneous catalytic system. This review presents a comprehensive step by step process of converting waste cooking oil (WCO) to biodiesel, using modified waste egg shell catalyst. The modified waste egg shell derived bi-functional catalyst could easily be removed from the fatty acid methyl esters (FAME) with limited environmental effects. The new modified catalytic system is able to convert the high free fatty acid (FFA) content waste cooking oil to FAME efficiently under moderate reaction conditions. Utilization of waste cooking oil as a feedstock for biodiesel production will reduce the food security issues that stem the biodiesel production from food-grade oil. Moreover, it will reduce the total production cost of the FAME due to its low cost. The major objective of this article is to demonstrate the current state of the use of heterogeneous bifunctional acid/base catalyst to produce biodiesel from green and non-edible waste cooking oil. At the end of the article, perspectives and future developments are also presented.

Country
Malaysia
Keywords

660

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    184
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
184
Top 1%
Top 10%
Top 1%
bronze