Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recovery of fertilizer nutrients from materials - Contradictions, mistakes and future trends

Authors: Anna Witek-Krowiak; Katarzyna Chojnacka; Konstantinos Moustakas; K. Gorazda;

Recovery of fertilizer nutrients from materials - Contradictions, mistakes and future trends

Abstract

Abstract In circular economy an effective strategy with regard to material valorization for fertilizers is expected to substantially improve sustainability, save resources and offer significant environmental, social and economic benefits. Wastes – especially biomass – are a large reservoir of materials which can be recovered via different technologies and used for manufacturing various fertilizers. Increasing re-use of nutrients from waste biomass is very difficult and requires taking additional steps to effectively use the potential of waste. It is necessary to introduce selective waste collection, increase the efficiency of nutrient recovery, obtain a more concentrated form with good bioavailability. Biomass waste streams carry huge potential, the content of fertilizer components is estimated at approx. 22 million Mg/year for nitrogen and 1.3 million Mg/year for phosphorus. Waste streams with the highest potential are waste from the food chain, manure and sewage, which are further processed and can be used for the production of fertilizers. Further research and experiments should be done to develop technologies that will enable exploitation of materials of high added value from biomass. Careful consideration should be given to energy routes. There is an urgent need for new technologies with which stable market dynamics via new business models could be safeguarded.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 1%
Top 10%
Top 1%