Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels

Authors: Amin Mirkouei; Samuel Hansen; Luis A. Diaz;

A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels

Abstract

Abstract Bioenergy sources are being advanced as a meaningful environmental solution and a substitute for conventional energy sources. Bioenergy from biomass feedstocks currently comprises the largest portion of renewables in the United States. Thus, more effective process-level solutions can result in scaling-up biomass-derived energy production (e.g., biofuels). Pyrolysis, a thermochemical conversion technology, offers a commercially viable pathway to produce bio-oil from a wide range of biomass feedstocks (e.g., algae and terrestrial). Bio-oil requires further upgrading to produce final bioproducts (e.g., transportation fuels and biochemicals). This article focuses on the upgrading of bio-oil to transportation fuels (liquid hydrocarbons), highlights the critical challenges of existing upgrading technologies, and identifies the potential research directions to meet the market needs. A comprehensive overview and classification of bio-oil upgrading pathways and their competencies are presented through both comparative and systematic literature reviews. It is concluded that the biofuel production cost is highly dependent on post-conversion pathways, particularly their hydrogenation and deoxygenation capacity. Thermochemical treatments are effective, but less cost-competitive due to the intensive process requirements (e.g., heat or pressure). Biochemical treatments are inadequate as a standalone process for upgrading bio-oil. Physicochemical treatments are less effective, however, they operate under mild process conditions and could be integrated with other treatments. It is further concluded that the electrochemical approach can be effective due to the retention of hydrogen from bio-oil water content during deoxygenation.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    172
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
172
Top 1%
Top 10%
Top 0.1%
bronze