
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Critical evaluation of process parameters for direct biodiesel production from diverse feedstock

Abstract Bottlenecks on the development of biodiesel production could be eliminated using direct transesterification (DT). This review presents a comprehensive overview for DT from oleaginous seed crops (edible and non-edible), microalgal and fungal/yeast biomass. Effects of key operational parameters, affecting the yield of biodiesel, such as feedstock, feedstock processing technologies, feedstock water content, catalyst choice, temperature, co-solvent and reaction time are summarised and critically assessed. 15% and 68% of published data showed high fatty acid (FA) yields and FA to fatty acid methyl ester (FAME) conversion efficiencies, respectively. Highest fatty acid yielding feedstock were Jatropha and a novel non-edible Mediterranean crop, Cynara cardunculus, the microalgae Chlorella and Nannochloropsis, and the fungi/yeast Trichosporon oleaginosus, Rhodosporidium toruloides, Lipomyces starkeyi, Mortierella isbellina, and Pichia guilliermondi. For wet microalgal biomass, a preference for acid-catalysed direct transesterification was determined, while base-catalysed DT was more suitable for dry biomass, except for turbo-thin film-assisted DT of microalgal biomass. The data highlight that DT operational parameters and technologies need optimisation for feedstock and water content and outcomes may be strongly strain-dependent for microalgal feedstock. To bring commercial biodiesel potential of some high-yielding feedstock to reality, comprehensive life cycle – and techno-economic analyses are required for intensified and non-intensified DT processing, taking feedstock production and possibilities of biorefinery concepts into account whilst also focussing on those processing platforms that can esterify fatty acids in wet biomass.
- University of North Sumatra Indonesia
- University of North Sumatra Indonesia
- Flinders University Australia
- Universitas Islam Balitar Indonesia
- Flinders University Australia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).86 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
