Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects

Authors: Rizwan Ahmad; Moonyong Lee; Bilal Kazmi; Ayyaz Muhammad; Junaid Haider; Saad Saeed; Muhammad Abdul Qyyum;

Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects

Abstract

Abstract The impurities CO2 and H2S in natural gas (NG) are recognized as major contaminants that exacerbate economic, operational, and environmental losses. Generally, these undesirable impurities are removed using well-established amine-based absorption methods. However, typical methods in this category are cost-intensive, primarily due to their high operating and maintenance costs. The ionic liquids (ILs) are emerging as alternative solvents owing to their lower regeneration costs and non-flammable nature. However, ILs could not attain a significant attention from practitioners due to the lack of effective communication between industry and academia. In this context, a comprehensive review and analysis of specific ILs that can simultaneously remove H2S and CO2 is proposed. This article highlights the major challenges and issues associated with various acid gases removal approaches, particularly IL-based absorption techniques. Recent developments toward solving the major issues associated with absorption using ILs are assessed to highlight areas for further improvement. The acid gas solubility data for ILs are analyzed to evaluate the feasibility and associated major constraints for large-scale process designs using commercial process simulators. Furthermore, the fundamentals for the process systems engineering-based investigations using ILs are also highlighted and evaluated. This study concludes that ILs have the potential to completely replace conventional solvents, have synergistic effects in terms of energy savings, and provide feasible solutions to maintenance-related issues.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 1%
Top 10%
Top 1%