
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects

Abstract The impurities CO2 and H2S in natural gas (NG) are recognized as major contaminants that exacerbate economic, operational, and environmental losses. Generally, these undesirable impurities are removed using well-established amine-based absorption methods. However, typical methods in this category are cost-intensive, primarily due to their high operating and maintenance costs. The ionic liquids (ILs) are emerging as alternative solvents owing to their lower regeneration costs and non-flammable nature. However, ILs could not attain a significant attention from practitioners due to the lack of effective communication between industry and academia. In this context, a comprehensive review and analysis of specific ILs that can simultaneously remove H2S and CO2 is proposed. This article highlights the major challenges and issues associated with various acid gases removal approaches, particularly IL-based absorption techniques. Recent developments toward solving the major issues associated with absorption using ILs are assessed to highlight areas for further improvement. The acid gas solubility data for ILs are analyzed to evaluate the feasibility and associated major constraints for large-scale process designs using commercial process simulators. Furthermore, the fundamentals for the process systems engineering-based investigations using ILs are also highlighted and evaluated. This study concludes that ILs have the potential to completely replace conventional solvents, have synergistic effects in terms of energy savings, and provide feasible solutions to maintenance-related issues.
- Yeungnam University Korea (Republic of)
- King Abdulaziz University Saudi Arabia
- Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology Pakistan
- Yeungnam University Korea (Republic of)
- Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology Pakistan
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).85 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
