Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach

Authors: Shengbo Ge; Shengbo Ge; Wan Adibah Wan Mahari; Changlei Xia; Meisam Tabatabaei; Meisam Tabatabaei; Rock Keey Liew; +9 Authors

Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach

Abstract

Abstract Microwave pyrolysis (MP) has emerged as a promising technique to valorize agricultural wastes (AW) into biofuels, comprising biochar, bio-oil, and syngas. To fill the research gap, we review the state-of-the-art MP conversion of AW into value-added biofuels, including the influence of feedstock composition, new reactor designs, operating conditions, catalytic applications, and reaction mechanisms. The techno-economic and environmental impacts are discussed together with key implications for future development. Microwave valorization of AW to biofuels represents an economically viable cum environmentally-benign approach by virtue of (i) high availability of AW, (ii) scalable process, (iii) great potentiality for continuous operation, and (iv) thermochemical process with positive energy ratio. For continuous MP, the microwave heating distribution, products yield, and reactor design have not yet fully explored due to the limited understanding on microwave propagation pattern, materials handling, and varying feedstock compositions. The utilization of AW as biofuels feedstock offers several environmental advantages in terms of improved biomass utilization, enhanced carbon sequestration, and lower sulphur emission. The toxicity of bio-oil can be reduced by adding metal oxide catalysts (CaO, CuO, MgO, and NiO) to lessen its content of polycyclic aromatic hydrocarbons. The process of continuous MP can be optimized by coupling shaftless auger and multiple magnetron to improve the quality of the biofuel, and uniformity of microwave heating. It is envisaged that continuous conversion of AW to biofuels is a sustainable, low carbon footprint, and alternative energy generation route, provided that the appropriate catalyst, effective condenser, and self-purging condition are chosen.

Related Organizations
Keywords

Lignocellulosic, Biofuel, Waste, Microwave, Pyrolysis

Powered by OpenAIRE graph
Found an issue? Give us feedback