
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optical degradation impact on the spectral performance of photovoltaic technology

handle: 11573/1625686
The exponential growth of global capacity along with a reduction in manufacturing costs in the last two decades has caused photovoltaic (PV) energy technology to reach a high maturity level. As a consequence, currently, researchers from all over the world are making great efforts to analyse how different types of degradation impact this technology. This study provides a detailed review of the impact of different optical degradation mechanisms, which mainly affect the transmittance of the top-sheet encapsulant, on the spectral response of the PV modules. The impact on the spectral performance of PV modules is evaluated by considering the variations of the short-circuit current since this is the most widely used parameter to study the spectral impact in outdoors. Some of the most common types of optical degradation affecting the performance of PV modules worldwide, such as discoloration, delamination, aging and soiling have been addressed. Due to the widely documented impact of soiling on the spectral response of modules, this mechanism has been specially highlighted in this study. On the other hand, most of the publications analysed in this review report optical degradation in PV modules with polymeric encapsulant materials. Furthermore, an innovative procedure to quantify the spectral impact of degradation on PV devices is presented. This has been used to analyse the impact of two particular cases of degradation due to soiling and discoloration on the spectral response of different PV technologies.
- University of Jaén Spain
- Sapienza University of Rome Italy
- University of Jaén Spain
degradation; irradiance; optical transmittance; photovoltaic; soiling; spectral losses, FOS: Physical sciences, Physics - Applied Physics, Applied Physics (physics.app-ph)
degradation; irradiance; optical transmittance; photovoltaic; soiling; spectral losses, FOS: Physical sciences, Physics - Applied Physics, Applied Physics (physics.app-ph)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
