Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ScholarBank@NUSarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable and Sustainable Energy Reviews
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable and Sustainable Energy Reviews
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Upcycling the anaerobic digestion streams in a bioeconomy approach: A review

Authors: Panagiotis Tsapekos; Benyamin Khoshnevisan; Merlin Alvarado-Morales; Xinyu Zhu; Junting Pan; Hailin Tian; Irini Angelidaki;

Upcycling the anaerobic digestion streams in a bioeconomy approach: A review

Abstract

Abstract Gaseous and liquid anaerobic digestion (AD) streams, currently are at best used for electricity and heat production or simply spreading at the fields, respectively. However, electricity and heat are economically produced from other renewables and advanced fertilizers are needed to avoid leaching and boost nutrients capture. Hence, AD seeks new opportunities to support circular bioeconomy. The overall objective of this review is to present state-of-the-art resource recovery routes for upcycling the AD streams to reduce carbon footprint and formulate alternative products to increase sustainability. Technical barriers and integrated systems to upcycle AD streams through biological means are presented. New technologies and methods to capture CH4, CO2 and nutrients from the digested residual resources are presented, as a) methanotrophs cultivation to be used as feed ingredients; b) CO2 conversion and micro-nutrients capturing from microalgae to be valorized for a wide range of applications (e.g. biofuels, food and feed, fertilizers, bioactive compounds); c) CO2 transformation to biodegradable plastics precursors (e.g. Polybutylene succinate, Polyhydroxyalkanoate); d) digestate valorization for biochar production to support efficient agricultural usage. Moreover, the environmental factors and life cycle assessment perspectives of the novel biorefinery routes are revised highlighting the need for regionalized models or assessments that can reveal the most sustainable routes based on local conditions and requirements. Despite AD poses some positive characteristics related to environmental benefit and emissions reduction, the present work reveals that the novel routes can further enhance sustainability metrics supporting circular bioeconomy.

Countries
Singapore, Denmark
Keywords

330, Circular economy, Digestate, Biogas, Added value molecules, 333, Residual resources upcycling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Average
Top 10%
Green
hybrid