Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable and Sustainable Energy Reviews
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2022
Data sources: UCL Discovery
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Future material requirements for global sustainable offshore wind energy development

Authors: Chen Li; José M. Mogollón; Arnold Tukker; Jianning Dong; Dominic von Terzi; Chunbo Zhang; Bernhard Steubing;

Future material requirements for global sustainable offshore wind energy development

Abstract

Offshore wind energy (OWE) is a cornerstone of future clean energy development. Yet, research into global OWE material demand has generally been limited to few materials and/or low technological resolution. In this study, we assess the primary raw material demand and secondary material supply of global OWE. It includes a wide assortment of materials, including bulk materials, rare earth elements, key metals, and other materials for manufacturing offshore wind turbines and foundations. Our OWE development scenarios consider important drivers such as growing wind turbine size, introducing new technologies, moving further to deep waters, and wind turbine lifetime extension. We show that the exploitation of OWE will require large quantities of raw materials from 2020 to 2040: 129-235 million tonnes (Mt) of steel, 8.2-14.6 Mt of iron, 3.8-25.9 Mt of concrete, 0.5-1.0 Mt of copper and 0.3-0.5 Mt of aluminium. Substantial amounts of rare earth elements will be required towards 2040, with up to 16, 13, 31 and 20 fold expansions in the current Neodymium (Nd), Dysprosium (Dy), Praseodymium (Pr) and Terbium (Tb) demand, respectively. Closed-loop recycling of end-of-life wind turbines could supply a maximum 3% and 12% of total material demand for OWE from 2020 to 2030, and 2030 to 2040, respectively. Moreover, a potential lifetime extension of wind turbines from 20 to 25 years would help to reduce material requirements by 7-10%. This study provides a basis for better understanding future OWE material requirements and, therefore, for optimizing future OWE developments in the ongoing energy transition.

Countries
Netherlands, United Kingdom
Related Organizations
Keywords

690, Material flow analysis (MFA), Circular designs, Material flow analyse, Circular design, Offshore wind energy (OWE), Offshore oil well production, Foundation, Recycling, Material demand, Rare earth elements, Material requirements, Offshore wind energy, Rare earth elements (REEs), Offshore wind turbines, Circular design (CD), Wind energy development, Material demands, Wind power, Wind turbine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 19
    download downloads 11
  • 19
    views
    11
    downloads
    Data sourceViewsDownloads
    TU Delft Repository1911
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
54
Top 10%
Top 10%
Top 1%
19
11
Green
hybrid