Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recent developments in heterogeneous electrocatalysts for ambient nitrogen reduction to ammonia: Activity, challenges, and future perspectives

Authors: Muhammad Asim Mushtaq; Muhammad Arif; Ghulam Yasin; Mohammad Tabish; Anuj Kumar; Shumaila Ibraheem; Wen Ye; +9 Authors

Recent developments in heterogeneous electrocatalysts for ambient nitrogen reduction to ammonia: Activity, challenges, and future perspectives

Abstract

Ammonia (NH3) plays a significant role in fertilizer production to support the ever-increasing population and serves as a renewable energy carrier as well as a zero-carbon emission fuel. Currently, NH3 is produced by a non-sustainable and highly energy-intensive process. Among the available alternatives, the electrochemical nitrogen reduction reactions (NRR) has attracted attention due to the compact and on-site electrolytic cells that can operate from solar or wind power under ambient conditions but still suffer from relatively low Faraday efficiency and NH3 yields. For the commercialization of electrocatalytic NRR, a catalytic material demonstrating a FE ∼50% and an NH3 yield rate of ∼10−6 mol s−1 cm−2 is suggested. Various strategies, including amorphization, structural engineering, catalyst-support interactions and hydrogen evolution suppression over catalytic materials, have been presented to enhance the electrocatalytic NRR. In this review, the current progress of various identified NRR electrocatalysts (including metal carbides, nitrides, oxides, phosphides, sulfides, selenides, borides, bimetallic materials, metal-organic frameworks, and metal-free materials) is summarized by collectively focusing on both theoretical analysis and experimental investigations. For further development of rational catalysts, a collaboration of theoretical and experimental studies, advanced characterization techniques, understanding of the electrocatalytic mechanism, efficient screening systems, and precise detection methods are needed. Specially designed electrocatalysts can improve NRR activity by regulating the cathodic reactions. The challenges and future perspectives have been described with special emphasis on various transition metal-based electrocatalysts for N2 fixation.

Related Organizations
Keywords

Nitrogen reduction reactions, Ammonia production, Heterogeneous catalysts, Ambient conditions, Electrocatalysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 1%
Top 10%
Top 1%