Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable and Sustainable Energy Reviews
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An approach for sizing a PV–battery–electrolyzer–fuel cell energy system: A case study at a field lab

Authors: Na Li; Zofia Lukszo; John Schmitz;

An approach for sizing a PV–battery–electrolyzer–fuel cell energy system: A case study at a field lab

Abstract

Hydrogen is becoming increasingly popular as a clean, secure, and affordable energy source for the future. This study develops an approach for designing a PV–battery–electrolyzer–fuel cell energy system that utilizes hydrogen as a long-term storage medium and battery as a short-term storage medium. The system is designed to supply load demand primarily through direct electricity generation in the summer, and indirect electricity generation through hydrogen in the winter. The sizing of system components is based on the direct electricity and indirect hydrogen demand, with a key input parameter being the load sizing factor, which determines the extent to which hydrogen is used to meet seasonal imbalance. Technical and financial indicators are used to assess the performance of the designed system. Simulation results indicate that the energy system can effectively balance the seasonal variation of renewable generation and load demand with the use of hydrogen. Additionally, guidelines for achieving self-sufficiency and system sustainability for providing enough power in the following years are provided to determine the appropriate component size. The sensitivity analysis indicates that the energy system can achieve self-sufficiency and system sustainability with a proper load sizing factor from a technical perspective. From an economic perspective, the levelized cost of energy is relatively high because of the high costs of hydrogen-related components at this moment. However, it has great economic potential for future self-sufficient energy systems with the maturity of hydrogen technologies.

Intelligent Electrical Power Grids

Energie and Industrie

The Green Village

EEMS - General

Country
Netherlands
Related Organizations
Keywords

690, Decentralized energy systems, Short-term energy storage medium, Electrolyzer, Fuel cell, Load sizing factor, Long-term energy storage medium, Hydrogen, System sizing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 37
    download downloads 30
  • 37
    views
    30
    downloads
    Data sourceViewsDownloads
    TU Delft Repository3730
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
20
Top 10%
Top 10%
Top 10%
37
30
hybrid
Funded by
Related to Research communities
Energy Research